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a b s t r a c t 

The asymptotic properties of ridge regression in large dimension are studied. Two key re- 

sults are established. First, consistency and rates of convergence for ridge regression are 

obtained under assumptions which impose different rates of increase in the dimension n 

between the first n1 and the remaining n − n1 eigenvalues of the population covariance of 

the predictors. Second, it is proved that under the special and more restrictive case of an 

approximate factor structure, principal component and ridge regression have the same rate 

of convergence and the rate is faster than the one previously established for ridge. 
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1. Introduction 

This paper develops asymptotic analysis of ridge regression in large dimension and compares it with principal component 

(PC) regression. Ridge regression estimates coefficients by minimizing the residual sum of squares plus a penalty which has 

the effect of shrinking the estimates of the coefficients towards zero. Principal component regression, on the other hand, 

uses PC as predictors in a linear regression that is fit using least squares. 

Ridge regression has a long tradition in applied mathematics ( Tikhonov, 1963 ) and also in econometrics and statistics

( Hoerl and Kennard, 1970; Leamer, 1973 ). The role of the penalty in the least squares regression is to reduce the variance of

the regression coefficients at the cost of a bias. The L2-penalty ‘shrinks’ all coefficients towards zero. A shrinkage parameter 

governs the tradeoff between variance and bias. As all regressors remain relevant, ridge captures dense structures of the 

data. It differs from shrinkage methods such as LASSO in which the L1-penalty performs variable selection, thereby cap- 

turing sparse structures. When data are correlated, ridge performs better than sparsity-enforcing methods (for an intuitive 

explanation see James et al. (2013) ). In high dimension, ridge was first studied by De Mol et al. (2008) who compare it with

principal component (PC) regression. Recent related work is He (2023) . 

PC Regression is an alternative to shrinkage as it compresses the data into a few components which capture the bulk

of the covariance of the data. As it is the case for shrinkage methods, compression provides a solution to the curse of
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dimensionality problem. Seminal work by Forni et al. (20 0 0) and Stock and Watson (2002) has established (n, T ) consistency

properties of principal component regression when the data have an approximate factor structure. Rates of convergence 

and general asymptotic properties, when both the number of predictors n and the sample size T go to infinity, have been

studied by Bai and Ng (2002) ; Bai (2003) and Forni et al. (2009) . Doz et al. (2012) and Barigozzi and Luciani (2019) establish

consistency and rates for likelihood-based estimators. 

Standard assumptions in this literature require that the ratio between the r-th largest and the (r + 1) -th largest eigen-

values of the population covariance matrix of the data, where r is the number of factors, is rising proportionally to n so that

the cumulative effects of the normalized factors on the cross-sectional units strongly dominate the idiosyncratic influences 

asymptotically. 

De Mol et al. (2008) show that under similar assumptions, ridge yields (n, T ) consistent forecast, as had been established

for PC. The intuitive explanation of the result is that both estimators give high weight to the dominant principal components

and either little weight (ridge) or zero weight (PC) to the remaining ones and therefore work well in forecasting when few

principal components explain the bulk of the predictors’ variation, as is the case with data that comove strongly. 

Building on this analysis, we consider here more general assumptions on the data generating process, allowing the eigen- 

values of the population covariance matrix to diverge at different rates. The first n1 eigenvalues grow with n but not nec-

essarily all linearly. The n − n1 remaining eigenvalues increase with n at a slower rate, so that the gap between the first

cluster of n1 eigenvalues and the second cluster of the remaining n − n1 eigenvalues also increases with n , but possibly

at a sublinear (i.e. slower than linear) rate. Accordingly, the population prediction equation is split into two components 

corresponding to these two clusters. This means that we relax the assumptions on the approximate factor model in two 

directions. First, the eigenvalues of the covariance matrix of the idiosyncratic component can grow with the cross-sectional 

dimension, allowing for the possibility of pervasive idiosyncratic shocks (note that this case was already considered by De 

Mol et al. (2008) ). Second, some of the eigenvalues of the dominating cluster can grow with the cross-sectional dimension

at a slower-than-linear rate, allowing for weaker factors. Our model includes as a special case the strong-factor-structure 

traditional assumptions of the principal component literature, as well as the structure adopted by Bai and Ng (2023) under

the name ‘weaker loadings’. This setup is different from the weak factor models considered by Onatski (2012) but broadly

aims at capturing similar empirical situations. 

We prove consistency and rates of convergence of the ridge regression estimate to the component of the prediction 

driven by the dominating cluster, when the number of predictors n and the sample size T go to infinity. The bias between 

the forecast driven by this component and the one provided by the ridge estimate vanishes asymptotically provided that 

the ridge parameter is properly tuned as a function of n and T . We also compare these rates of convergence for ridge with

those for PC under the same relaxed assumptions. 

We then reconsider as a special case the factor structure analyzed in De Mol et al. (2008) and show that in this case

the component recovered by ridge regression corresponds to the prediction based on the r = n1 pervasive factors. Moreover, 

we can asymptotically capture not only the forecast driven by the dominating subspace or common component, but also 

the optimal forecast. Here the asymptotic analysis lets the number of predictors and the sample size go to infinity with no

restriction on their relative growth rates. The rates we obtain are improved with respect to those derived by De Mol et al.

(2008) and are the same as for PC. 

Our results have two important implications. First, they establish that ridge is a valid alternative to PC and therefore

provides asymptotic foundations for the use of L2-penalized regression in large dimension, including Bayesian regression 

with normal priors. The multivariate generalization of this approach is the Bayesian VAR with Minnesota priors which is a 

well established tool in time series econometrics. For an analysis of the Bayesian VAR in large dimension, see Bańbura et al.

(2010) and the subsequent literature recently surveyed by Hauzenberger et al. (2024) . Second, they show that compression 

and shrinkage are equivalent. Ridge via shrinkage and PC via compression both capture the component of the prediction 

that is associated with the dominating eigenvalues of the covariance matrix. Both ridge and PC regression are dense in the

sense of Giannone et al. (2021) since the mass of regression coefficients is dispersed throughout all variables implying that 

all explanatory variables are included in the prediction, although the impact of each of them may be small. 

Notations 

Throughout the paper, we will use the following notations. For a vector v in R
n , we will denote its L2-norm by ‖ v ‖ ,

that is ‖ v ‖ = √ ∑ n 
i =1 | vi |2 . For a matrix A , we will use the spectral norm defined as ‖ A ‖ = max v : v′ v =1 

√ 

v′ A′ A v (which is the

maximal eigenvalue for a symmetric square matrix), where v′ denotes the transpose of v and A′ the transpose of A . Identity

matrices will be denoted by I. 

As concerns asymptotics, we will use the notations ‘Big O’ and ‘Big Theta’. We recall that for two functions f (n ) and

g(n ) depending on n , one says that f (n ) = O (g(n )) asymptotically as n → ∞ if | f (n ) | ≤ Mg(n ) , for all n > n0 , with M > 0 a

constant independent of n . If, moreover, there is another constant m > 0 such that mg(n ) ≤ | f (n ) | ≤ Mg(n ) , for all n > n0 ,

then one says that f (n ) = �(g(n )) asymptotically. 

For stochastic variables, similar bounds are supposed to hold in probability, i.e. one says that f (n ) = Op (g(n )) if 

∣∣∣ f (n ) 
g(n ) 

∣∣∣ is

bounded in probability, or else if for every η > 0 there is a constant M(η) and an integer n (η) such that if n ≥ n (η) , then

the probability P

(∣∣∣ f (n ) 
g(n ) 

∣∣∣ ≤ M(η)
)

is greater or equal to 1 − η. 
2
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Later on, we will also consider asymptotics in both variables n and T , the number of observed time samples. Besides, we

will use repeatedly the following well-known result. 

Lemma 1. A zero-mean stochastic variable Xn is of the order of its standard deviation σn , i.e. Xn = Op (σn ) . 

Proof. Let Xn be a sequence of zero-mean stochastic variables with variance V ar(Xn ) ≡ σ 2 
n . Then the Tchebycheff inequality 

implies that 

P (| Xn | ≥ ε) ≤ V ar(Xn ) 

ε2 
, for any ε > 0 , (1) 

or equivalently, setting η = ε−2 , 

P

(∣∣∣∣ Xn 

σn 

∣∣∣∣ ≤ 1 √ 

η

)
≥ 1 − η, (2) 

which means precisely that Xn = Op (σn ) . �

2. General Setting 

Consider the linear regression model 

yt+ h = X ′ 
t β + ut+ h (3) 

where yt is the one-dimensional target variable to be forecast at some horizon h , Xt is a high-dimensional time series of

dimension n and ut is a noise term. To allow for dependence of the forecast on a finite number of lags in the series, we

assume that the corresponding lagged series are included in Xt . 

Assumption 1. In model (3) , i.e. yt+ h = X ′ 
t β + ut+ h , we assume that 

(i) the individual series xit , i = 1 , . . . , n, are normalized to have zero mean and unit variance; 

(ii) ut has mean zero and is orthogonal to each of the n individual series xit , i = 1 , . . . , n , namely E(xit ut+ h ) = 0 , for all i

(by E we denote the expectation); 

(iii) yt and Xt are jointly stationary. 

Then, the n -dimensional vector of the population regression coefficients, denoted by β , is given by 

β = �−1 
XX �Xy (4) 

where �XX = E(Xt X
′ 
t ) is the n × n population covariance matrix, assumed to be invertible, and �Xy = E(Xt yt+ h ) is the n × 1

population covariance with the dependent variable. Stationarity, implicitly assuming the existence of second-order moments, 

means that these covariance matrices do not depend on t and are componentwise bounded. Moreover, for a fixed n , all

variances are bounded, i.e. V ar(yt ) < + ∞ , V ar(xit ) < + ∞ for all i and V ar(ut ) < + ∞ . Notice that the covariance matrix

�Xy , and hence the regression coefficient β , depend on the forecast horizon h . We drop this dependence for notational

convenience. 

The aim is to forecast yt+ h based on the information contained in the observations of the high-dimensional time series 

Xt . Moreover, we want to investigate the following questions: (i) to what extent can we improve the forecast by increasing

the number n of individual series? (ii) what can be recovered asymptotically when n → ∞ ? 

Let us first remark that 

V ar(yt+ h ) = V ar(X ′ 
t β) + V ar(ut+ h ) . (5) 

Since we want to investigate the asymptotic behavior of the forecast when the dimension n tends to infinity, we have to

ensure that the variance of the forecast does not blow up and remains bounded not only for every fixed n but also for

n → ∞ . Accordingly, we introduce the following assumption. 

Assumption 2. 

V ar(X ′ 
t β) = β ′ �XX β = O (1) for n → ∞ . (6) 

Let us now denote by y the T × 1 vector collecting the observations of the target variable yt′ for t′ = 1 + h, 2 + h, · · · , T ′ ≡
T + h available at time T ′ and range the corresponding observations of Xt for t = 1 , . . . , T in the T × n matrix X . 

To overcome the curse of dimensionality affecting the Ordinary Least Squares (OLS) estimator ˆ β = (X ′ X )−1 X ′ y , we con-

sider the following penalized least squares or ridge estimator 

ˆ βλ = arg min 

β

{
1 

T 
‖ y − X β‖2 + λ‖ β‖2 

}
(7) 
3
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where λ is the shrinkage parameter and where the penalty involves the L2-norm of β . This ridge estimator is given by 

ˆ βλ =
(

X ′ X 

T 
+ λI

)−1 
X ′ y 
T 

=
(
SXX + λI

)−1 
SXy (8) 

where SXX = X ′ X 
T and SXy = X ′ y 

T are the sample covariance matrices and I is the identity matrix. 

Another difficulty in high dimension is that the sample covariance matrices (the only ones we have access to from the

data) are not necessarily close to the population covariance matrices (see Lemma 4 hereafter). This induces us to introduce 

the following assumption – in the spirit of factor models – that the eigenvalue spectrum of �XX can be separated into two

clusters, labelled by 1 and 2. The first one, of fixed dimension (independent of n ), contains the largest eigenvalues, typically

growing fast with n for correlated individual series, and on which the forecast will be based. The other one contains the

smallest eigenvalues which remain bounded or grow with n at a slower rate. This is the part that we will not be able

to capture asymptotically when n → ∞ , so that we consider it as irrelevant for the forecast. Precise assumptions on the

behavior of the eigenvalues in the two clusters will be made later in the paper. 

Assumption 3. The population covariance matrix admits the following eigendecomposition 

�XX = V1 D1 V
′ 

1 + V2 D2 V
′ 

2 (9) 

where Di is a diagonal matrix containing the eigenvalues d j ’s of �XX belonging to the cluster i and Vi is the matrix con-

taining as columns the corresponding eigenvectors. The eigenvalues are ordered by decreasing order of magnitude – and 

repeated according to their multiplicity in case of degeneracy (with, of course, no eigenvalue belonging to the two clusters). 

The first cluster is of fixed dimension n1 , independent of n , and contains the largest n1 eigenvalues, whereas the second

one has dimension n2 = n − n1 and contains the remaining ones. The eigenvectors are orthonormalized, so that we have 

1 V
′ 
1 

+ V2 V
′ 
2 

= In ×n , where In ×n is the n × n identity matrix, and also V ′ 
1 

V2 = 0 = V ′ 
2 

V1 , expressing the orthogonality of the

eigensubspaces corresponding to the two clusters. 

We will also need the eigendecompositions 

�1 / 2 
XX 

= V1 D1 / 2 
1 

V ′ 
1 + V2 D1 / 2 

2 
V ′ 

2 (10) 

and, if all eigenvalues are bounded away from zero, 

�−1 
XX = V1 D−1 

1 V ′ 
1 + V2 D−1 

2 V ′ 
2 . (11) 

For the empirical covariance SXX = X ′ X 
T , we will make use of the analogous spectral decomposition 

SXX = ˆ V1 
ˆ D1 

ˆ V ′ 
1 + ˆ V2 

ˆ D2 
ˆ V ′ 

2 (12) 

where the first cluster will contain the n1 largest eigenvalues ˆ d j ’s of SXX , using similar assumptions as in Assumption 3 . We

will also need later the eigendecomposition 

(SXX + λI)−1 = ˆ V1 ( ˆ D1 + λI)−1 ˆ V ′ 
1 + ˆ V2 ( ˆ D2 + λI)−1 ˆ V ′ 

2 (13) 

where I denote the identity matrices of appropriate dimension ( n1 or n2 ). 

Now let us decompose β as 

β = V1 V
′ 

1 β + V2 V
′ 

2 β ≡ β1 + β2 (14) 

where β1 (respectively β2 ) is the projection of β on the first (respectively second) cluster. Then the variance β ′ �XX β of X ′ 
t β

can also be decomposed into the two parts: 

β ′ �XX β = ‖ �1 / 2 
XX 

β‖2 = β ′ 
1 V1 D1 V

′ 
1 β1 + β ′ 

2 V2 D2 V
′ 

2 β2 

= ‖ V1 D1 / 2 
1 

V ′ 
1 β1 ‖2 + ‖ V2 D1 / 2 

2 
V ′ 

2 β2 ‖2 = O (1) , (15) 

the last equality resulting from Assumption 2 . 

Lemma 2. Under Assumption 2 , we have the following bound on the norm of β1 for n → ∞ 

‖ β1 ‖ = O

( 

1 √ 

dmin 
1 

) 

(16) 

where dmin 
1 

denotes the smallest eigenvalue of the first cluster. 

Proof. We have 

‖ β1 ‖ = ‖ V1 D−1 / 2 
1 

V ′ 
1 V1 D1 / 2 

1 
V ′ 

1 β1 ‖ 

≤ ‖ V1 D−1 / 2 
1 

V ′ 
1 ‖ ‖ V1 D1 / 2 

1 
V ′ 

1 β1 ‖ ≤ 1 √ 

dmin 
1 

O (1) (17) 

since ‖ V1 D1 / 2 
1 

V ′ 
1 β1 ‖ is also an O (1) by (15) . �
4
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3. Perturbation results for the covariance matrices 

We will first establish some bounds on the difference – measured in the spectral norm – between the population and 

sample covariances. The basic assumption is that the sample covariances converge componentwise to their population coun- 

terparts. More specifically, we will introduce the following assumption. 

Assumption 4. There exist constants M1 < ∞ and M2 < ∞ such that 

T E

(
[ SXX − �XX ] 

2 
i, j 

)
< M1 , for all i, j, (18) 

and 

T E

([
SXy − �Xy 

]2 

i 

)
< M2 , for all i. (19) 

The bounds M1 and M2 are uniform with respect to the elements i, j and i , respectively. 

Notice that the componentwise convergence can be obtained under mild conditions on the autocovariances and fourth 

cumulants of the predictors xi and on the cross-covariances with the target variable y . We do not state primitive assumptions 

since the desired result can be obtained with a variety of detailed conditions. For a discussion see Forni et al. (2009) and

Barigozzi (2022) . 

Lemma 3. Under Assumption 4 , we have that, asymptotically for large n and T , 

‖ �XX − SXX ‖ = Op 

(
n √ 

T 

)
, (20) 

and 

‖ �Xy − SXy ‖ = Op 

(√ 

n √ 

T 

)
. (21) 

Proof. Since ‖ A ‖2 ≤ T race (A′ A ) = ∑ 

i, j A
2 
i, j 

, we have that 

E
(‖ �XX − SXX ‖2 

)
≤ n2 max 

i, j 
E[ SXX − �XX ] 

2 
i, j < M1 

n2 

T 
, (22) 

and 

E
(‖ �Xy − SXy ‖2 

)
≤ n max 

i 
E
[
SXy − �Xy 

]2 

i 
< M2 

n 

T 
. (23) 

The result then follows from Lemma 1 . �

Weyl’s inequality then yields the following classical perturbation result for the eigenvalues. 

Lemma 4. We have for n, T → ∞ and for all indices j, 

ˆ dj = dj + Op 

(
n √ 

T 

)
(24) 

where d j (respectively ˆ d j ) is the jth eigenvalue of �XX (respectively SXX ). 

Proof. The proof immediately follows from Weyl’s inequality 

| dj − ˆ dj | ≤ ‖ �XX − SXX ‖ = Op 

(
n √ 

T 

)
(25) 

which holds for all j. �

This shows that in high dimension the two spectra can be quite far apart. 

Even more crucial are results about the perturbation of the corresponding eigenvectors. Using the decompositions above 

into two clusters of eigenvalues, we want to establish asymptotic bounds on the cross terms ‖ V ′ 
1 

ˆ V2 ‖ and ‖ V ′ 
2 

ˆ V1 ‖ . These

terms characterize in some way the angles between the subspaces spanned by the respective eigenvectors of the two clus- 

ters. 

We can derive the following result. 

Lemma 5. Asymptotically for large n and T , we have 

‖ V ′ 
1 

ˆ V2 ‖ ≤ 1 

dmin 
1 

− dmax 
2 

+ Op 

(
n √ 

T 

) Op 

(
n √ 

T 

)
(26) 
5
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and the same bound holds for ‖ V ′ 
2 

ˆ V1 ‖ . 
Proof. We have SXX 

ˆ V2 = ( ˆ V1 
ˆ D1 

ˆ V ′ 
1 

+ ˆ V2 
ˆ D2 

ˆ V ′ 
2 
) ˆ V2 = ˆ V2 

ˆ D2 since ˆ V ′ 
1 

ˆ V2 = 0 . Similarly, V ′ 
1 

�XX = D1 V
′ 
1 
. Hence 

V ′ 
1 SXX 

ˆ V2 = V ′ 
1 

ˆ V2 
ˆ D2 (27) 

and 

D1 V
′ 

1 
ˆ V2 = V ′ 

1 �XX 
ˆ V2 = V ′ 

1 (�XX − SXX ) ˆ V2 + V ′ 
1 

ˆ V2 
ˆ D2 . (28) 

This yields the bound 

‖ V ′ 
1 

ˆ V2 ‖ ≤ ‖ D−1 
1 ‖

(
‖ �XX − SXX ‖ + ‖ ˆ D2 ‖ ‖ V ′ 

1 
ˆ V2 ‖

)
= 

1 

dmin 
1 

(
‖ �XX − SXX ‖ + ˆ dmax 

2 ‖ V ′ 
1 

ˆ V2 ‖
)

(29) 

where dmin 
1 

denotes the smallest eigenvalue of D1 and 

ˆ dmax 
2 

the largest of ˆ D2 , and we used the fact that all matrices formed

by orthogonal vectors have a spectral norm bounded by 1. Using Lemma 4 , we get 

‖ V ′ 
1 

ˆ V2 ‖ ≤ 1 

dmin 
1 

(
‖ �XX − SXX ‖ +

(
dmax 

2 + Op 

(
n √ 

T 

))
‖ V ′ 

1 
ˆ V2 ‖

)
, (30) 

whence the bound (26) using Lemma 3 . We can derive exactly the same bound for ‖ V ′ 
2 

ˆ V1 ‖ . �

Let us remark that (26) is non-trivial and yields a meaningful bound only if the gap between the eigenvalues of the

two clusters of the population covariance matrix is strictly positive and, moreover, if this gap dominates the size of the

perturbation Op (
n √ 

T 
) resulting from Lemma 4 , namely if asymptotically 

gap(n ) ≡ dmin 
1 − dmax 

2 > Op 

(
n √ 

T 

)
. (31) 

Notice that if gap(n ) grows proportionally to n , then it is sufficient to assume that T is large enough, independently of n .

However, if the gap grows with n at a slower rate, then we have to assume that T grows sufficiently fast with respect to n . 

Lemma 5 is somehow related to the Davis-Kahan theorem (( Davis and Kahan, 1970 ) – see also Yu et al. (2014) ) but the

comparison with these results is not completely straightforward because of different contexts. We provide here a simple 

proof of the result under the form we need for our purpose. 

As we will see, the perturbation results of the present section are the key for deriving the asymptotic consistency results

of the next section. 

4. Consistency rates for large n and T 

In this section, we will derive the key result of the paper, namely that, under appropriate spectral assumptions on the

population covariance matrix, the ridge regression estimator (8) yields asymptotically for large n and T the same forecast as

the forecast driven by the dominant spectral cluster, namely that X ′ 
t 

ˆ βλ converges in probability to X ′ 
t β1 , provided that the 

parameter λ is tuned appropriately ( λ ∼ n/
√ 

T ). 

We first establish the following lemma. 

Lemma 6. Asymptotically for large n and T , we have the bound 

‖ X ′ 
t 

ˆ V2 ‖ ≤ Op 

(√ 

dmax 
1 

)
1 

dmin 
1 

− dmax 
2 

+ Op (
n √ 

T 
) 

Op 

(
n √ 

T 

)
+ Op 

(√ 

dmax 
2 

)
. (32) 

Proof. Let us remark that 

‖ X ′ 
t 

ˆ V2 ‖ = ‖ X ′ 
t V1 V

′ 
1 

ˆ V2 + X ′ 
t V2 V

′ 
2 

ˆ V2 ‖ 

≤ ‖ X ′ 
t V1 ‖ ‖ V ′ 

1 
ˆ V2 ‖ + ‖ X ′ 

t V2 ‖ ‖ V ′ 
2 

ˆ V2 ‖ . (33) 

We have ‖ X ′ 
t V1 ‖ ≤ Op (

√ 

dmax 
1 

) and ‖ X ′ 
t V2 ‖ = Op (

√ 

dmax 
2 

) since 

E ‖ X ′ 
t V1 ‖2 = E ‖ V ′ 

1 Xt X ′ 
t V1 ‖ = ‖ V ′ 

1 �XX V1 ‖ ≤ dmax 
1 (34) 

and the same holds when substituting the indices 1 by 2. Using Lemmas 1 and 5 as well as the bound ‖ V ′ 
2 

ˆ V2 ‖ ≤ ‖ V ′ 
2 
‖ ‖ ˆ V2 ‖ ≤

1 for the orthogonal matrices ‖ ˆ V2 ‖ and ‖ V ′ 
2 ‖ , the result follows. �

The next proposition yields an asymptotic upper bound for the error we commit when forecasting X ′ 
t β1 by X ′ 

t 
ˆ βλ, or else

for the bias between the forecast driven by the dominating cluster and the one provided by the ridge regression estimator. 
6
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Proposition 1. Asymptotically for large n and T , the point forecast error is bounded as follows 

| X ′ 
t (

ˆ βλ − β1 ) | ≤p 
n 

√ 

T 

(
dmin 

1 
+ Op 

(
n √ 

T 

))
( 

1 +
√ 

n √ 

dmin 
1 

) 

+ 

1 √ 

dmin 
1 

⎛ 

⎜ ⎝ 

n
√ 

dmax 
1 √ 

T (dmin 
1 

− dmax 
2 

+ Op 

(
n √ 

T 

)
) 

+
√ 

dmax 
2 

⎞ 

⎟ ⎠ 

+ 

1 

λ

√ 

n √ 

T 

( 

1 +
√ 

n √ 

dmin 
1 

) 

⎛ 

⎜ ⎝ 

n
√ 

dmax 
1 √ 

T (dmin 
1 

− dmax 
2 

+ Op 

(
n √ 

T 

)
) 

+
√ 

dmax 
2 

⎞ 

⎟ ⎠ 

+ λ
1 √ 

dmin 
1 

√ 

n 

dmin 
1 

+ Op 

(
n √ 

T 

) , (35) 

where ≤p · means ≤ Op (·) . 
Proof. Let us consider the difference 

ˆ βλ − β1 = 

(
SXX + λI

)−1 
SXy − V1 V

′ 
1 �

−1 
XX �Xy 

= 

(
SXX + λI

)−1 
(SXy − �Xy ) 

+
[ (

SXX + λI
)−1 − V1 V

′ 
1 �

−1 
XX 

] 
�Xy . (36) 

Noticing that V1 V
′ 
1 �

−1 
XX 

= V1 V
′ 
1 V1 D−1 

1 
V ′ 

1 = (V1 D1 V
′ 
1 )

−1 and using the matrix identity A−1 − B−1 = A−1 (B − A ) B−1 , we get 

ˆ βλ − β1 = 

(
SXX + λI

)−1 
(SXy − �Xy ) 

+
(
SXX + λI

)−1 
(V1 D1 V

′ 
1 − SXX − λI)(V1 D1 V

′ 
1 )

−1 �Xy 

= 

(
SXX + λI

)−1 [
(SXy − �Xy ) + (�XX − SXX ) β1 − λβ1 

]
. (37) 

This yields the following bound for the point forecast error 

| X ′ 
t (

ˆ βλ − β1 ) | ≤ ‖ X ′ 
t 

(
SXX + λI

)−1 ‖ 

×
[‖ SXy − �Xy ‖ + ‖ �XX − SXX ‖ ‖ β1 ‖ + λ‖ β1 ‖

]
. (38) 

To bound the term between brackets, we can use Lemmas 2 and 3 which yield 

‖ SXy − �Xy ‖ + ‖ �XX − SXX ‖ ‖ β1 ‖ + λ‖ β1 ‖ 

≤ Op 

(√ 

n √ 

T 

)
+ Op 

(
n √ 

T 

)
O

( 

1 √ 

dmin 
1 

) 

+ λ O

( 

1 √ 

dmin 
1 

) 

. (39) 

To bound the first term, we use the spectral decomposition of SXX 

‖ X ′ 
t 

(
SXX + λI

)−1 ‖ = ‖ X ′ 
t 

ˆ V1 ( ˆ D1 + λ)−1 ˆ V ′ 
1 + X ′ 

t 
ˆ V2 ( ˆ D2 + λ)−1 ˆ V ′ 

2 ‖ 

≤ Op (
√ 

n ) 

ˆ dmin 
1 

+ 1 

λ
‖ X ′ 

t 
ˆ V2 ‖ , (40) 

where we used the bounds 

‖ X ′ 
t ‖ ≤ Op (

√ 

n ) , (41) 

which follows from Lemma 1 and Assumption 1 , 

‖ ˆ V1 ( ˆ D1 + λ)−1 ˆ V ′ 
1 ‖ ≤ 1 

ˆ dmin 
1 

, (42) 

and 

‖ ( ˆ D2 + λ)−1 ˆ V ′ 
2 ‖ ≤ 1 

. (43) 

λ

7
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Let us remark that the latter two spectral bounds are always valid but will be bad when λ does not dominate the eigenvalues

of the second cluster while being smaller than those of the first. But this is what we expect of an appropriate choice of λ
since we want to capture the forecast driven by the dominating cluster. Finally, replacing ˆ dmin 

1 
by dmin 

1 
+ Op (n/

√ 

T ) thanks 

to Lemma 4 , using Lemma 6 to bound ‖ X ′ 
t 

ˆ V2 ‖ , and injecting all previous bounds into (38) , we obtain the asymptotic upper

bound (35) for the point forecast error. �

To derive consistency rates, we introduce further assumptions about the asymptotic growth rates of the extreme popu- 

lation eigenvalues of the two clusters. More specifically, as a simple model, we will assume that dmax 
1 

grows proportionally 

to the dimension n whereas dmin 
1 

grows at the possibly slower rate n1 −δ with δ ≥ 0 . The maximal eigenvalue of the sec-

ond cluster dmax 
2 

is supposed to grow proportionally to n1 −α with α ≤ 1 and α > δ, so that, asymptotically, the gap (31) ,

gap(n ) ≡ dmin 
1 

− dmax 
2 

= n1 −δ − n1 −α , is positive and grows with n . This is summarized into the following assumption, using

the notation ‘Big Theta’, �(·) , introduced in the notation subsection at the end of Section 1 . 

Assumption 5. The extreme eigenvalues of the two clusters of the population covariance matrix behave asymptotically as 

follows: 

dmax 
1 = �(n ) ; dmin 

1 = �(n1 −δ ) ; dmax 
2 = �(n1 −α) , (44) 

with 0 ≤ δ < α ≤ 1 . 

Under this simple model, we can establish the following bound for the forecast error (35) . 

Proposition 2. Under Assumption 5 , we get the consistency rate 

| X ′ 
t (

ˆ βλ − β1 ) | ≤ Op 

(
n

3 
2 δ√ 

T 
+ n

δ−α
2 

)
, (45) 

asymptotically for n, T → ∞ , if the ridge parameter is set to λ = n/
√ 

T . 

Proof. Using the approximation 

n 
n1 −δ−n1 −α = nδ

1 −nδ−α ∼ nδ and plugging the growth rates (44) into (35) , we get 

| X ′ 
t (

ˆ βλ − β1 ) | ≤p 
nδ

√ 

T 

(
1 + n

1 
2 δ

)
+ n

δ−1 
2 

(√ 

n √ 

T 
nδ + n

1 −α
2 

)

+ 1 

λ

(√ 

n √ 

T 
nδ + n

1 −α
2 

)√ 

n √ 

T 

(
1 + n

δ
2 

)
+ λ n

3 
2 δ−1 , (46) 

where we dropped all terms Op (n/
√ 

T ) in the denominators in (35) , assuming that 
√ 

T is growing faster than nδ . We see

that asymptotic consistency requires n
3 
2 
δ/

√ 

T → 0 for n, T → ∞ , which implies indeed nδ/
√ 

T → 0 . Keeping only the asymp-

totically dominating terms, we finally obtain 

| X ′ 
t (

ˆ βλ − β1 ) | ≤p 
n

3 
2 δ√ 

T 
+ n

δ−α
2 

+ 1 

λ

( 

n1+ 3 
2 δ

T 
+ n1+ δ−α

2 √ 

T 

) 

+ λ n
3 
2 δ−1 . (47) 

We see that with the choice of the ridge parameter λ = n √ 

T 
, the last two terms are of the same order as the first two ones,

which then govern the asymptotic rate. �

Hence, the bias between the forecast driven by the dominating cluster and the one provided by the ridge regression

estimator vanishes asymptotically for n, T → ∞ provided that the ridge parameter is properly tuned. The consistency rate 

for the variance is just the square of the rate in (45) . Let us stress the fact that for α = δ, i.e. in the absence of a spectral

gap in the population covariance matrix, there is one term which does not vanish asymptotically for n → ∞ , meaning that

we cannot show consistency for the capture of the forecast driven by the dominating subspace. Notice also that, in the case

of a fixed dimension n , it is known that the ridge parameter λ should be asymptotically of the order of 1 /
√ 

T to achieve the

best bias-variance tradeoff. In a way, our results generalize such a tuning to the high-dimensional case. 

5. Consistency rates under a factor model 

In this section, we consider the case where the high-dimensional time series is driven by a smaller dimensional one, i.e.

where it obeys to a so-called factor model, implying that the forecast of yt depends only on a finite (and small) number r

of unobserved factors. As in De Mol et al. (2008) , we assume the following: 
8
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Assumption 6. We have 

yt+ h = γ Ft + vt+ h (48) 

where vt+ h is orthogonal to Xt for all n and where the factors Ft = ( f1 t , ..., frt )
′ are a r-dimensional stationary process with

covariance matrix E(Ft F
′ 

t ) = Ir×r . 

The forecast based on the projection on the unobserved factors Ft , namely 

y∗
t+ h | t = γ Ft , (49) 

is optimal since its forecast accuracy cannot be improved in view of the assumption of orthogonality between the residuals 

vt+ h and the observed predictors Xt . However, for fixed n , the optimal forecast is unfeasible, even with an infinite sample

size T , since the factors are unobserved. 

We further assume that the observed predictors Xt are related to the common factors as follows: 

Assumption 7. We have 

Xt = �Ft + ξt , (50) 

where the residuals ξt are a n -dimensional stationary process with covariance matrix E(ξt ξ ′ 
t ) = � of full rank for all n and

are orthogonal to the factors Ft . The n × r matrix � of the loadings is a non-random matrix of full rank r for each n . 

Notice that, in this model, only the common part �Ft driven by the factors is informative about the future of the target

variable whereas the residuals – the so-called ‘idiosyncratic component’ ξt – are not. This assumption is justified by the 

finding in Luciani (2014) who studies the role of ‘non-pervasive’ shocks when forecasting with factor models with a sparse 

idiosyncratic component. He shows, both in simulations and on a large panel of US quarterly data, that the idiosyncratic 

component does not help forecasting macroeconomic variables. Moreover, the assumption that � is of full rank entails 

that there are no redundant predictors, in the sense that, when we increase the number of predictors, information is not

duplicated. 

Under Assumptions 6 and 7 , we have: 

�XX = E(Xt X
′ 
t ) = ��′ + � and �Xy = E(Xt yt+ h ) = �γ ′ (51) 

where �XX is invertible for all n . Consequently, for a given number n of predictors, the population OLS regression coefficient

(4) is unique and the forecast is given by: 

yt+ h | t = X ′ 
t β = X ′ 

t (��′ + �)−1 �γ ′ . (52) 

Such a factor model induces the presence of two clusters in the spectrum of the covariance matrix �XX , the first one being

dominated by ��′ while the second one is driven by � . As done in De Mol et al. (2008) , the following assumptions are

usually made on the corresponding eigenvalues. 

Let us first consider the case of an exact factor model where we have uncorrelated components ξi , i.e. where � = I. Then

��′ and �XX share the same eigenvectors. For the first cluster, corresponding to the first n1 = r largest eigenvalues, it is 

assumed that for n → ∞ , the eigenvalues of ��′ all grow as �(n ) , so that for the extreme eigenvalues of the first cluster,

we have 

dmax 
1 = �(n ) and dmin 

1 = �(n ) . (53) 

This means that in (44) we have δ = 0 . As for the second cluster, we have only the eigenvalues of � = I, so that dmax 
2 

= 1 .

In this case, we also see from the expression β = (��′ + I)−1 �γ ′ , that β belongs to the r-dimensional range of the matrix

�, or in other words that β = β1 and β2 = 0 . 

However, we would like to allow the residuals ξt to be weakly correlated across predictors, though less pervasive than 

the common component �Ft . To treat the case where � � = I, we need to be more careful, since in general ��′ cannot be

diagonalized on the same basis. Now, assuming as above that the first cluster is spanned by the eigenvectors of ��′ and

that n1 = r, and assuming that the maximal eigenvalue of � , dmax (�) = �(n1 −α) with 0 < α ≤ 1 , we remark that adding to

��′ the positive-definite matrix � will not modify the leading growth rate (53) , which remains valid. On the eigenspace 

corresponding to the second cluster, ��′ vanishes, so that the maximal eigenvalue of �XX coincides with that of � . Hence 

dmax 
2 = dmax (�) = �(n1 −α) with 0 < α ≤ 1 . (54) 

Also in the case � � = I, we see from the expression β = (��′ + �)−1 �γ ′ that β is a linear combination of the columns of

�, hence belongs to the first cluster, or else that β = β1 and β2 = 0 . Hence we have 

‖ β‖ = O

(
1 √ 

n 

)
, (55) 

which was an essential ingredient for the consistency proofs by De Mol et al. (2008) . This is similar to the bound (16) which

here is entailed by the factor model instead of relying on condition (6) as assumed in Lemma 2 . 
9
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The following result replicates Proposition 2 of Section 4 in the case of a factor model, setting β1 = β and δ = 0 . 

Proposition 3. Under the factor-model Assumptions 6 and 7 with dmax 
1 

= dmin 
1 

= �(n ) and dmax 
2 

= �(n1 −α) , α > 0 , we get the

consistency rate for the ridge estimator ˆ βλ

| X ′ 
t (

ˆ βλ − β) | ≤ Op 

(
1 √ 

T 
+ 1 

(
√ 

n )α

)
, (56) 

asymptotically for n, T → ∞ , provided that the ridge parameter is set to λ = n/
√ 

T . 

Proof. Redo the proof of Proposition 1 , suppressing all subscripts 1 in the derivation from equation (36) to equation (39) ,

using the bound (55) instead of (16) , and keeping the rest of the derivations unchanged. Then use Proposition 2 setting

δ = 0 . �

As shown in De Mol et al. (2008) , in the case of a factor model, we can asymptotically capture not only the forecast

yt+ h | t = X ′ 
t β driven by the dominating subspace or common component, but also the optimal forecast y∗

t+ h | t = γ Ft . This 

result is reproduced in the following proposition. 

Proposition 4. Under the factor-model Assumptions 6 and 7 and if dmax 
2 

= �(n1 −α) , we have 

yt+ h | t − y∗
t+ h | t = Op 

(
1 

(
√ 

n )α

)
, (57) 

asymptotically for n → ∞ . 

Proof. By a straightforward matrix identity, we get 

β = �−1 
XX �Xy = (��′ + �)−1 �γ ′ = �−1 �(�′ �−1 � + I)−1 γ ′ . (58) 

According to (52), (49) and (50) , we have 

yt+ h | t − y∗
t+ h | t = X ′ 

t β − F ′ 
t γ

′ = (F ′ 
t �

′ + ξ ′ 
t ) β − F ′ 

t γ
′ 

= F ′ 
t �

′ �−1 �(�′ �−1 � + I)−1 γ ′ − F ′ 
t γ

′ + ξ ′ 
t β. (59) 

To bound the first two terms, we notice that 

‖ �′ �−1 �(�′ �−1 � + I)−1 − I‖ = ‖ (�′ �−1 � + I)−1 ‖ ≤ 1 

dmin (�′ �−1 �) 
(60) 

where dmin (A ) denotes the minimum eigenvalue of the matrix A (and dmax (A ) its maximum one). To bound the third term,

we use the fact that 

E

[ (
ξ ′ 

t β
)2 

] 
= β ′ �β = γ (�′ �−1 � + I)−1 �′ �−1 ��−1 �(�′ �−1 � + I)−1 γ ′ 

≤ ‖ γ ‖2 ‖ (�′ �−1 �)−1 ‖‖ (�′ �−1 �)(�′ �−1 � + I)−1 ‖ 

≤ ‖ γ ‖2 1 

dmin (�′ �−1 �) 
, (61) 

which using ‖ γ ‖ = O( 1) and Lemma 1 implies 

ξ ′ 
t β = Op 

(
dmin (�′ �−1 �)

)−1 / 2 
. (62) 

Since by the assumptions (53) and (54) made on the factor model, 

dmin (�′ �−1 �) ≥ dmin (�−1 ) dmin (�′ �) =
(
dmax (�)

)−1 
dmin (�′ �) ≥ 1 , (63) 

and since the term (62) dominates (60) , we get the announced rate (57) . �

Combining the results of the two last propositions, we get the following asymptotically consistency rate for the ridge 

regression estimator to the optimal forecast under a factor model. 

Theorem 1. Under the factor-model Assumptions 6 and 7 with dmax 
2 

= �(n1 −α) , we get the following consistency rate for the

bias of the ridge estimator ˆ βλ with λ = n/
√ 

T : 

| X ′ 
t 

ˆ βλ − y∗
t+ h | t | ≤ Op 

(
1 √ 

T 
+ 1 

(
√ 

n )α

)
, (64) 

asymptotically for n, T → ∞ , with no restriction on the path in the (n, T ) -plane. For a strong factor model, this holds with α = 1 .

Proof. This property results immediately from Propositions 3 and 4 . �

This asymptotic rate constitutes an improvement with respect to the rate derived in De Mol et al. (2008) where the term

depending on T is only T−1 / 4 . 
10
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6. Comparison with Principal Component Regression 

The ridge estimator (7) - (8) , via the addition of the penalty λ‖ β‖2 to the least squares term, modifies the spectrum of the

empirical covariance matrix SXX by shifting away from zero its smallest eigenvalues, which are problematic for inverting the 

matrix in high dimension. On the other hand, estimators based on principal components sharply truncates this spectrum, 

keeping only the largest eigenvalues and eliminating the others. Hence, assuming that we know the right truncation point, 

i.e. the number n1 of the eigenvalues in the dominating cluster, the corresponding estimator of the regression coefficient 

based on PC is given by 

ˆ βPC = ˆ V1 
ˆ D−1 

1 
ˆ V ′ 

1 SXy . (65) 

Indeed, using the diagonal form (12) of the empirical covariance matrix SXX , it is easy to see that this estimator coincides

with the solution of the least squares regression when keeping only the first n1 PC as predictors. 

Then, under the model (44) of Assumption 5 for the eigenvalues, we get the following asymptotic rate for the capture of

the forecast X ′ 
t β1 driven by the dominating cluster. 

Proposition 5. If dmin 
1 = �(n1 −δ ) , we have the consistency rate 

| X ′ 
t (

ˆ βPC − β1 ) | ≤ Op 

(
n

3 
2 δ√ 

T 

)
, (66) 

asymptotically for n, T → ∞ . 

Proof. We have 

ˆ βPC − β1 = ˆ V1 
ˆ D−1 

1 
ˆ V ′ 

1 SXy − V1 D−1 
1 V ′ 

1 �Xy (67) 

or else 

ˆ βPC − β1 = ˆ V1 
ˆ D−1 

1 
ˆ V ′ 

1 (SXy − �Xy ) + ( ˆ V1 
ˆ D−1 

1 
ˆ V ′ 

1 − V1 D−1 
1 V ′ 

1 ) �Xy . (68) 

Using the identity 

ˆ V1 
ˆ D−1 

1 
ˆ V ′ 

1 − V1 D−1 
1 V ′ 

1 = ˆ V1 
ˆ D−1 

1 
ˆ V ′ 

1 

[ 
V1 D1 V

′ 
1 − ˆ V1 

ˆ D1 
ˆ V ′ 

1 

] 
V1 D−1 

1 V ′ 
1 (69) 

we get 

ˆ βPC − β1 = ˆ V1 
ˆ D−1 

1 
ˆ V ′ 

1 

[ 
(SXy − �Xy ) + [ V1 D1 V

′ 
1 − ˆ V1 

ˆ D1 
ˆ V ′ 

1 ] V1 D
−1 
1 V ′ 

1 �Xy 

] 
. (70) 

Using Lemma 3 on the behavior of the covariance matrices as well as Lemma 2 and the bound (41) , we get the following

bound for the point forecast error 

| X ′ 
t (

ˆ βPC − β1 ) | ≤p 

√ 

n 

ˆ dmin 
1 

( √ 

n √ 

T 
+ n √ 

T 

1 √ 

dmin 
1 

) 

. (71) 

Replacing ˆ dmin 
1 

by dmin 
1 

+ Op (
n √ 

T 
) according to Lemma 4 , assuming the behavior dmin 

1 
= �(n1 −δ ) , and keeping only the dom-

inating term, we get the rate (66) . �

As in the case of the ridge estimator, we see that asymptotic consistency requires n
3 
2 
δ/

√ 

T → 0 for n, T → ∞ . The rate

for the variance is just the square of this rate for the bias. 

Under the factor model described in Section 5 , we have β = β1 and δ = 0 , so that we get a rate 1 /
√ 

T for any path,

independently of the growth of n . This result could also be proved anew by replacing everywhere in the derivation here

above β1 by β and V1 D−1 
1 

V ′ 
1 by V D−1 V ′ , the complete eigendecomposition of �XX . Moreover, we can then pretend to 

capture also the optimal forecast y∗
t+ h | t driven by the factors and use Proposition 4 , which combined with the previous

Proposition 5 , yields the following theorem. 

Theorem 2. Under the factor-model Assumptions 6 and 7 , we get the following consistency rate for the bias of the principal

component estimator ˆ βPC with respect to the optimal forecast : 

| X ′ 
t 

ˆ βPC − y∗
t+ h | t | ≤ Op 

(
1 √ 

T 
+ 1 

(
√ 

n )α

)
, (72) 

asymptotically for n, T → ∞ , with no restriction on the path in the (n, T ) -plane. For a strong factor model, this holds with α = 1 .

We notice that this is exactly the same rate as for the ridge estimator. However, let us stress the fact that, to get con-

sistency, knowing the exact number of factors r = n1 is crucial here to set the truncation point right on the number of

principal components used. On the other hand, in the ridge estimator, setting the parameter λ to n/
√ 

T , i.e. to the right
11
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order of growth, would be sufficient to this purpose. Such flexibility might perhaps constitute an advantage for ridge re- 

gression compared to principal component regression, at least in such a high-dimensional time series context. However, in 

practice, it is not easy to pick the right tuning since this only gives an asymptotic rate. In regularization theory in a deter-

ministic setting (with a fixed design), there is a vast literature dedicated to the choice of the regularization parameter in

ridge or of the truncation point for principal component regression (and to the relation between the two choices). In the

present stochastic setting and for factor models, there are also many papers dealing with the determination of the number 

of factors, including by Bai and Ng (2002) who use information criteria. However, to the best of our knowledge, nothing

similar is available for the ridge parameter and our results could constitute a starting point to investigate this question. In

finite samples, as done in the empirics reported by De Mol et al. (2008) , cross-validation remains a route of choice to select

these tuning parameters. 

7. Conclusions 

The paper establishes (n, T ) asymptotic results for ridge regression and PC regression. It contains two novel results. First,

it proves that under less restrictive assumptions than strong factors (or ‘approximate factor model’), the ridge regression 

estimator yields asymptotically for large n and T the same forecast as the forecast driven by the common component of the

data, i.e. the component associated to the dominant eigenvalues of the population covariance matrix. Second, in the special 

case of a strong factor structure, it establishes improved (n, T ) consistency rates for ridge regression, which turn out to be

the same as those available for PC in the literature. Our results imply that compression via PC and shrinkage via ridge are

equivalent. Both methods capture the bulk of the information contained in a large number of strongly correlated predictors 

and are therefore suitable for predictors that strongly comove, as it is the case in several economic situations. 
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